Compressed Sensing for Multidimensional Spectroscopy Experiments.

نویسندگان

  • Jacob N Sanders
  • Semion K Saikin
  • Sarah Mostame
  • Xavier Andrade
  • Julia R Widom
  • Andrew H Marcus
  • Alán Aspuru-Guzik
چکیده

Compressed sensing is a processing method that significantly reduces the number of measurements needed to accurately resolve signals in many fields of science and engineering. We develop a two-dimensional variant of compressed sensing for multidimensional spectroscopy and apply it to experimental data. For the model system of atomic rubidium vapor, we find that compressed sensing provides an order-of-magnitude (about 10-fold) improvement in spectral resolution along each dimension, as compared to a conventional discrete Fourier transform, using the same data set. More attractive is that compressed sensing allows for random undersampling of the experimental data, down to less than 5% of the experimental data set, with essentially no loss in spectral resolution. We believe that by combining powerful resolution with ease of use, compressed sensing can be a powerful tool for the analysis and interpretation of ultrafast spectroscopy data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving resolution in multidimensional NMR using random quadrature detection with compressed sensing reconstruction

NMR spectroscopy is central to atomic resolution studies in biology and chemistry. Key to this approach are multidimensional experiments. Obtaining such experiments with sufficient resolution, however, is a slow process, in part since each time increment in every indirect dimension needs to be recorded twice, in quadrature. We introduce a modified compressed sensing (CS) algorithm enabling reco...

متن کامل

Compressed Sensing for Sparse Magnetic Resonance Spectroscopy

Introduction: Multidimensional magnetic resonance spectroscopy (MRS) can provide additional information at the expense of longer acquisition time than 1D MRS. Assuming 2D MRS is sparse in wavelet domain, Iddo[1] first introduced compressed sensing (CS) [2,3] to reconstruct multidimensional MRS from partial and random free induction decay (FID) data. However, the darkness in 1D MRS derives from ...

متن کامل

Compressive Fourier Transform Spectroscopy

We describe an approach based on compressive-sampling which allows for a considerable reduction in the acquisition time in Fourier-transform spectroscopy. In this approach, an N-point Fourier spectrum is resolved from much less than N time-domain measurements using a compressive-sensing reconstruction algorithm. We demonstrate the technique by resolving sparse vibrational spectra using <25% of ...

متن کامل

Multidimensional Random Sampling for Fourier Transform Estimation

......................................................................................................................... I Acknowledgments .......................................................................................................... II Author Declaration ........................................................................................................ IV Associated Publicati...

متن کامل

Parallel Sampling and Reconstruction with Permutation in Multidimensional Compressed Sensing

The advent of compressed sensing provides a new way to sample and compress signals. In this thesis, a parallel compressed sensing architecture is proposed, which samples a twodimensional reshaped multidimensional signal column by column using the same sensing matrix. Compared to architectures that sample a vector-reshaped multidimensional signal, the sampling device in the parallel compressed s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 3 18  شماره 

صفحات  -

تاریخ انتشار 2012